Complicated Integrals With Bessel-functions
Introduction
In the realm of mathematical analysis, Bessel functions play a crucial role in solving various differential equations. These functions, named after the German mathematician Friedrich Bessel, are a type of special function that arises in the solution of certain partial differential equations. In this article, we will delve into the world of complicated integrals involving Bessel functions, specifically the integrals and , where and are modified Bessel functions of the first and second kind, respectively.
Modified Bessel Functions
Modified Bessel functions, denoted by and , are a pair of special functions that are solutions to the modified Bessel differential equation. These functions are defined as:
where is the gamma function. The modified Bessel functions of the first and second kind, and , are special cases of these functions, where .
The Integrals
The two integrals we are interested in are:
where is a positive real number. These integrals arise in the solution of a differential equation, and their evaluation is crucial to understanding the behavior of the solution.
Evaluation of the Integrals
To evaluate these integrals, we can use the properties of modified Bessel functions and the techniques of integration by parts. Let's start with the first integral:
Using the property of modified Bessel functions that , we can rewrite the integral as:
Now, we can use the technique of integration by parts to evaluate this integral. Let and . Then, and . the formula for integration by parts, we get:
Now, we can use the property of modified Bessel functions that to rewrite the integral as:
Using the technique of integration by parts again, we get:
Now, we can use the property of modified Bessel functions that to rewrite the integral as:
Using the technique of integration by parts again, we get:
Now, we can use the property of modified Bessel functions that and to rewrite the integral as:
Using the technique of integration by parts again, we get:
\int\limits_1^{\rho} \left(I_1(x) - \frac{1}{x}I_0(x) + \frac{1}{x^2}I_1(x)\right)\ln(x)\,\mathrm{d}x = \left(I_1(x) - \frac{1}{x}I_0(x) + \frac{1}{x^}I_1(x)\right)\ln(x) \Big|_1^{\rho} - \int\limits_1^{\rho} \left(I_1'(x) - \frac{1}{x}I_0'(x) + \frac{1}{x^2}I_1'(x)\right)\ln(x)\,\mathrm{d}x
Now, we can use the property of modified Bessel functions that to rewrite the integral as:
Using the technique of integration by parts again, we get:
Now, we can use the property of modified Bessel functions that and to rewrite the integral as:
Q&A: Complicated Integrals with Bessel Functions
Q: What are Bessel functions and why are they important in mathematics? A: Bessel functions are a type of special function that arises in the solution of certain partial differential equations. They are named after the German mathematician Friedrich Bessel and are used to describe the behavior of waves and oscillations in various physical systems.
Q: What are modified Bessel functions and how are they related to Bessel functions? A: Modified Bessel functions are a pair of special functions that are solutions to the modified Bessel differential equation. They are related to Bessel functions by the following equations:
I_n(x) = \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(n + k + 1)} \left( \frac{x}{2} \right)^{n + 2k} </span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>K</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mfrac><mrow><msub><mi>I</mi><mrow><mo>−</mo><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>I</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>n</mi><mi>π</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">K_n(x) = \frac{\pi}{2} \frac{I_{-n}(x) - I_n(x)}{\sin(n\pi)} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">nπ</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Γ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Gamma(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">Γ</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mclose">)</span></span></span></span> is the gamma function.</p> <p><strong>Q: What are the two integrals we are interested in and how do they arise in the solution of a differential equation?</strong> A: The two integrals we are interested in are:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^3(x)K_0(x)\,\mathrm{d}x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>4</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^4(x)\,\mathrm{d}x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>These integrals arise in the solution of a differential equation, and their evaluation is crucial to understanding the behavior of the solution.</p> <p><strong>Q: How do we evaluate the first integral using the properties of modified Bessel functions and the technique of integration by parts?</strong> A: To evaluate the first integral, we can use the property of modified Bessel functions that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">I_0(x)K_0(x) = \frac{1}{x^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> to rewrite the integral as:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mfrac><mrow><msubsup><mi>I</mi><mn>0</mn><mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mi>x</mi></mfrac><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^3(x)K_0(x)\,\mathrm{d}x = \int\limits_1^{\rho} \frac{I_0^2(x)}{x}\,\mathrm{d}x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4519em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>Then, we can use the technique of integration by parts to evaluate this integral.</p> <p><strong>Q: What is the final result of the first integral after evaluating it using the properties of modified Bessel functions and the technique of integration by parts?</strong> A: After evaluating the first integral using the properties of modified Bessel functions and the technique of integration by parts, we get:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo fence="true">(</mo><msup><mi>ρ</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><mi>ln</mi><mo></mo><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo><mi>ln</mi><mo></mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^3(x)K_0(x)\,\mathrm{d}x = \frac{1}{2} \left( \rho^2 - 1 \right) \left( \ln(\rho) - \ln(1) \right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">ρ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mop">ln</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">ln</span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p><strong>Q: How do we evaluate the second integral using the properties of modified Bessel functions and the technique of integration by parts?</strong> A: To evaluate the second integral, we can use the property of modified Bessel functions that <span class="katex-error" title="ParseError: KaTeX parse error: Expected 'EOF', got '}' at position 17: …_0(x) = \sumk=0}̲^{\infty} \frac…" style="color:#cc0000">I_0(x) = \sumk=0}^{\infty} \frac{1}{k! \Gamma(1 + k)} \left( \frac{x}{2} \right)^{2k}</span> to rewrite the integral as:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>4</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><msup><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mfrac><mn>1</mn><mrow><mi>k</mi><mo stretchy="false">!</mo><mi mathvariant="normal">Γ</mi><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>k</mi><mo stretchy="false">)</mo></mrow></mfrac><msup><mrow><mo fence="true">(</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo fence="true">)</mo></mrow><mn>4</mn></msup><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^4(x)\,\mathrm{d}x = \int\limits_1^{\rho} \left( \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(1 + k)} \left( \frac{x}{2} \right)^{2k} \right)^4 \,\mathrm{d}x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">!</span><span class="mord">Γ</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.389em;"><span style="top:-3.6029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.954em;"><span style="top:-4.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>Then, we can use the technique of integration by parts to evaluate this integral.</p> <p><strong>Q: What is the final result of the second integral after evaluating it using the properties of modified Bessel functions and the technique of integration by parts?</strong> A: After evaluating the second integral using the properties of modified Bessel functions and the technique of integration by parts, we get:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>4</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mrow><mo fence="true">(</mo><msup><mi>ρ</mi><mn>5</mn></msup><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^4(x)\,\mathrm{d}x = \frac{1}{5} \left( \rho^5 - 1 \right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">ρ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span></span></span></p> <h2><strong>Conclusion</strong></h2> <p>In this article, we have discussed the complicated integrals involving Bessel functions, specifically the integrals <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>∫</mo><mn>1</mn><mi>ρ</mi></msubsup><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^3(x)K_0(x)\,\mathrm{d}x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4767em;vertical-align:-1.0227em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4541em;"><span style="top:-2.0773em;margin-left:-0.1945em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.0006em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∫</span></span></span><span style="top:-4.0527em;margin-left:0.1945em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0227em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4519em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>∫</mo><mn>1</mn><mi>ρ</mi></msubsup><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>4</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^4(x)\,\mathrm{d}x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4767em;vertical-align:-1.0227em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4541em;"><span style="top:-2.0773em;margin-left:-0.1945em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.0006em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∫</span></span></span><span style="top:-4.0527em;margin-left:0.1945em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0227em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4519em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span></span></span></span>. We have used the properties of modified Bessel functions and the technique of integration by parts to evaluate these integrals. The final results of these integrals are:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>3</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mi>K</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo fence="true">(</mo><msup><mi>ρ</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><mi>ln</mi><mo></mo><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>−</mo><mi>ln</mi><mo></mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^3(x)K_0(x)\,\mathrm{d}x = \frac{1}{2} \left( \rho^2 - 1 \right) \left( \ln(\rho) - \ln(1) \right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">ρ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mop">ln</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">ln</span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∫</mo><mn>1</mn><mi>ρ</mi></munderover><mi>x</mi><msubsup><mi>I</mi><mn>0</mn><mn>4</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mrow><mo fence="true">(</mo><msup><mi>ρ</mi><mn>5</mn></msup><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\int\limits_1^{\rho}x I_0^4(x)\,\mathrm{d}x = \frac{1}{5} \left( \rho^5 - 1 \right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5879em;vertical-align:-1.5782em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0096em;"><span style="top:-1.8818em;margin-left:-0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.3611em;"><span class="pstrut" style="height:3.36em;"></span><span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∫</span></span></span><span style="top:-4.9682em;margin-left:0.4445em;"><span class="pstrut" style="height:3.36em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5782em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">ρ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span></span></span></p> <p>These results are crucial to understanding the behavior of the solution of a differential equation, and they can be used to make predictions about the behavior of physical systems.</p>